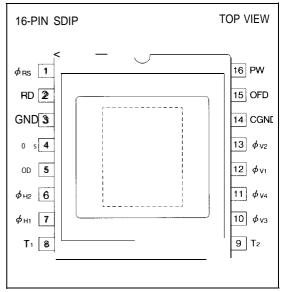
LZ2324AK 1/3 type B/W CCD Area Sensor for CCIR


DESCRIPTION

li!2324AK is a 1 /3-type (6.0 mm) solid-state image sensor that consists of PN phote-diodes and CCDS (charge-coupled devices). Having approximately0020pixels (horizontal 542 Xvertical 582), the sensor provides a high resolution stable B/W image,

FEATURES

- Number of pixels : 512 (H) X 582 (V) Pixel pitch : 9.6 μm (H) × 6.3 μm (V) Number of optical black pixels : Horizontal; front 2 and rear 28
- Low fixed pattern noise and lag
- No sticking and no image distortion
- Blooming suppression structure
- Built-in output amplifier
- Variable electronic shutter (1/50 to 1/1 O 000 s)
- Compatible with CCIR standard
- Package : 16-pin SDIP[CERDIP](WDIP016-N-0500C)

PIN CONNECTIONS

(12) ϕ_{V1} (13) ϕ_{V2} Register 10 ϕ_{V3} Shift (11) ø_{v4} T₁ T_2 14) CGND AGND (3 15 OFD 16 Pw 0s (4 Horizontal Shift Register 5 2 6 OD RD $\phi_{\rm RS}$ фнι **Ф**H2

BLOCK DIAGRAM

124 The absence of confirmation by device specification sheets, WARP takes no responsibility for any defects that recur in equipment using any of WARPs devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any WARP a device."

PIN DESCRIPTION

SYMBOL	PIN NAME
RD	Reset transistor drain
OD	Output transistor drain
Os	Video output
ϕ RS	Reset transistor gate clock
φ _{V1} , φ _{V2} , φ _{V3} , φ _{V4}	Vertical shift register gate clock
<i>ф</i> н1, <i>ф</i> н2	Horizontal shift register gate clock
OFD	Overflow drain
Pw	P type well
AGND	Analog part ground
CGND	Clock part ground
T1, T2	Test terminal

ABSOLUTE MAXIMUM RATINGS

		(•	u = 20 0)
PARAMETER	SYMBOL	RATING	UNIT
Output transistor drain voltage	Vod	Oto +18	v
Reset transistor drain voltage	Vrd	Oto + 18	v
Overflow drain voltage	Vofd	o t0 +55	v
Test terminal. T1	VT1	Oto +18	v
Test terminal, T2	V T2	-0.3 to +18	v
Reset gate clock voltage	V ∉ RS	-0.3 to +18	v
Vertical shift register clock voltage	V ø v	-9,0 to +18	v
Horizontal shift resister clock voltage	Vøн	-0.3 to +18	v
Voltage difference between PW and vertical clock	VPW-Vøv	-27 to O	v
Storage temperature	Tstg	-20 to +80	°C
Operating ambient temperature	Topr	-20 to +70	°C

(Ta = 25°C)

RECOMMENDED OPERATING CONDITIONS

PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE	
Operating ambient temperature		Торі		25.0		°C		
Output transistor drain voltage		Vod	14.5	15.0	16.0	٧		
Reset transistor drain voltage		VRD		VOD		V		
Overflow	When DC is	s applied	Vom	5.0		19.0	٧	1
drain voltage	When pulse p-p level	e is applied	V ¢ OFD	22.0			v	2
Analog part	ground		AGND		0,0		٧	
Clock part g	round		CGND		0.0		V	
P-well voltaa	e		VPW	- 9.0		V Ø VL	٧	
Test terminal, T1		VT1		Vod		V		
Test terminal	Test terminal, T2		VT2		0.0		۷	
		LOW level	VØV1L, VØV2L VØV3L, VØV4L	- 8.5	-8.0	- 7.5	v	
Vertical shift register clock		INTERMEDIATE level	Vφν11, Vφν21 Vφν31, Vφν41		0.0		v	
		HIGH level	Vφν1Η, Vφν3Η	16.0	16.5	17.0	۷	1
Horizontal sh	lift	LOW level	Vøhil, Vøh2l	- 0.05	0.0	0.05	٧	
register cloc	k	HIGH level	Vøн1н, Vøн2н	4.7	5.0	6.0	V	
Reset gate clock	look	LOW level	V ¢ RSL	0.0		RD~ 12.[۷	
	LIUCK	HIGH level	V ¢ RSH	/RD-7.{		9,5	V	
Vertical shift register clock frequency		føv1, føv2 føv3, føv4		15,63		kHz		
Horizontal sh	Horizontal shift register clock frequency		føн1, føн2		9.66	1	MHz	
Reset gate	Reset gate clock frequency		føRS		9.66		MHz	

NOTES :

1. When DC voltage is applied, shutter speed is 1 /50 seconds.

2. When pulse is applied, shutter speed is less than 1/50 seconds.

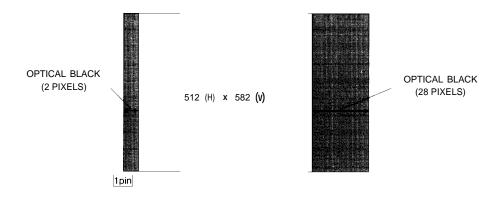
ELECTRICAL CHARACTERISTICS (Drive method : Field Accumulation)

 $(T = 25^{\circ}C)$, Operating conditions : typical values for the recommended operating conditions, Color temperature of light source : 3200 K / IR cut-off filter (CM-500, 1 mmt))

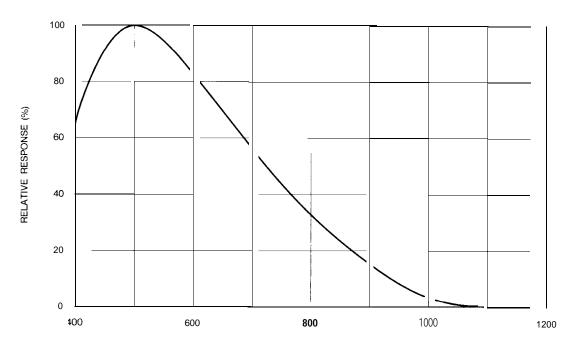
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Photo response non-uniformity	PRNU			10	%	2
Saturation signal	Vsat	550			mV	3
Saturation non-uniformity	SSUN			20	%	4
Dark output voltage	Vdark		0,3	3.0	mV	1, 5
Dark signal non-uniformity	DSNU		0.6	2,0	mV	1, 6
Sensitivity	R	360	500		mV	7
Gamma	Y		1			
Smear ratio	SMR		0.009	0.016	%	8
Image lag	AI			1.0	%	9
Blooming suppression ratio	ABL	1000				10
Output transistor drain current	lop		4.0	8.0	mA	
Output impedance	Ro		300		Ω	
Dark noise	Vnoise		0.2	0,4	mV	11
OB difference in level				1,0	mV	12

• The standard output voltage is defined as 150 mV by the average output voltage under uniform illumination.

• The standard exposure level is defined when the average output voltage is 150 mV under uniform illumination.

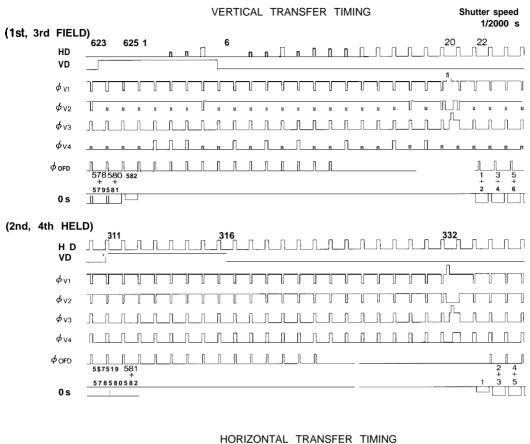

NOTES :

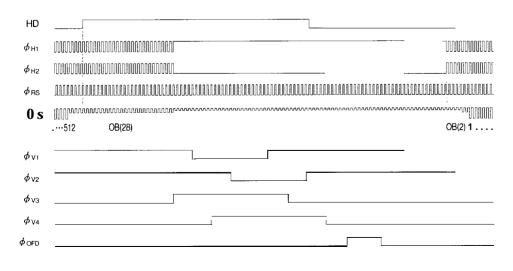
- 1. Ta : + 60°C
- 2. The image area is divided into 10X 10 segments. The segment's voltage is the average output voltage of all the pixels within the segment. PRNU is defined by (Vmax Vmin)/Vo, where Vmax and Vmin are the maximum and the minimum values of each segment's voltage respectively, when the average output voltage Vo is 150 mV.
- 3. The image area is divided into 10x 10 segments. The saturation signal is defined as the minimum of each segment's voltage which is the average output voltage of all the pixels within the segment, when the exposure level is set as 10 times, compared to standard level.
- 4. The image area is dividedinto 10X 10 segments. The voltage of a segment is the saturation signal (Vs), when the exposure level is set as 10 times, compared to standard level. SSUN is defined by (Vmax- Vmin)/Vs, when Vmax and Vmin are the maximum and minimum values of each segment's voltage respectively.
- 5. The average output voltage under a non-exposure condition.
- The image area is divided into 10X 10 segments. DSNU is defined by (Vdmax – Vdmin) under the non-exposure con-

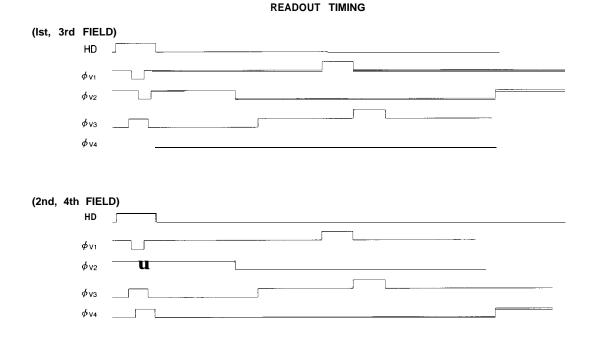

dition where Vdmax and Vdmin are the maximum and the minimum values of each segment's voltage, respective y, that is the average output voltage over all pixels in the segment.

- The average output voltage when a 1 COO luxl ight source attached with a 90% reflector is imaged by a lens of F4, f50 mm.
- 8. The sensor is adjusted to position a V/I O square at the center of image area where V is the vertical length of the image area. SMR is defined by the ratio of the output voltage detected during the vertical blanking period to the maximum of the pixel voltage in the V/I O square.
- 9. The sensor is exposed at the exposure level corresponding to the standard condition preceding non-exposure condition. Al is defined by the ratio between the output voltage measured at the 1st field during the non-exposure period and the standard output voltage.
- 10. The sensor is adjusted to position a V/I O square at the center of image area. ABL is the ratio between the exposure at the standard condition and the exposure at a point where a blooming is observed.
- 11. The RMS value of the dark noise (after CDS). The bandwidth range is from 100 kHz to 5.0 MHz
- 12. The difference between the average output voltage of the effective area and the OB part under the non-exposure condition.

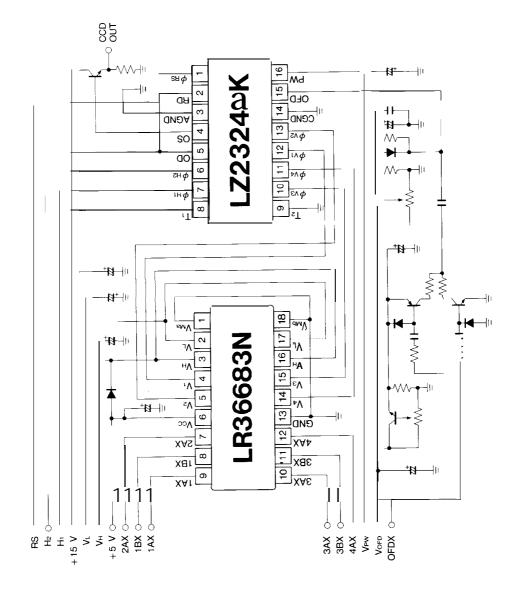
PIXEL STRUCTURE


SPECTRAL RESPONSE EXAMPLE




WAVE LENGTH (rim)

SHARP


TIMING DIAGRAM EXAMPLE

SYSTEM CONFIGURATION EXAMPLE

CCD AREA SENSORS